Другая популярная модель, подразумевающая существование Вселенной до Большого взрыва, -экпиротический сценарий (от греч. ekpyrotic-«пришедший из огня»), разработанный три года назад Джастином Каури (Justin Khoury) из Колумбийского университета, Полом Штейнхард-том (Paul Steinhardt) из Принстонского университета, Бартом Оврутом (Burt A. Ovrut) из Пенсильванского университета, Натаном Зейбергом (Nathan Seiberg) из Института углубленных исследований и Нейлом Тьюроком (Neil Turok) из Кембриджского университета. Оноснован на предположении, что наша Вселенная - одна из многих D-мембран, дрейфующих в многомерном пространстве. Мембраны притягиваются друг к другу, а когда они сталкиваются, в них может произойти то, что мы называем Большим взрывом (см. рис. на стр. 38).
Не исключено, что коллизии происходят циклически.
Две мембраны могут сталкиваться, отскакивать друг от друга, расходиться, притягиваться одна к другой, снова соударяться и так далее. Расходясь после удара, они немного растягиваются, а при очередном сближении снова сжимаются. Когда направление движения мембраны сменяется на противоположное, она расширяется с ускорением, поэтому наблюдаемое ускоряющееся расширение Вселенной может указывать на предстоящее столкновение.
У предвзрывного и экпиротического сценариев есть общие особенности. Оба они начинаются с большой, холодной, почти пустой Вселенной, и обоим свойственна трудная (и пока нерешенная) проблема перехода от состояния перед Большим взрывом к стадии после него. Математически главное различие между двумя моделями заключается в поведении дилатона. В предвзрывном сценарии это поле и, соответственно, все силы природы изначально очень слабы и постепенно усиливаются, достигая максимума в момент Большого взрыва. Для эк-пиротической модели справедливо обратное:
столкновение происходит тогда, когда значения сил минимальны.
Разработчики экпиротической схемы вначале надеялись, что слабость сил облегчит процедуру анализа столкновения, однако им приходится иметь дело с высокой кривизной пространства-времени, поэтому пока нельзя однозначно решить, удастся ли избежать сингулярности. Кроме того, этот сценарий должен протекать при весьма специфичных обстоятельствах. Например, перед самым столкновением мембраны должны быть почти идеально параллельны друг другу, иначе вызванный им Большой взрыв будет недостаточно однородным. В циклической версии эта проблема стоит не так остро: последовательные соударения позволили бы мембранам выровняться.
Оставив пока в стороне трудности полного математического обоснования обеих моделей, ученые должны разобраться, удастся ли когда-нибудь проверить их экспериментально. На первый взгляд, описанные сценарии очень похожи на упражнения не в физике, а в метафизике: масса интересных идей, которые никогда не удастся подтвердить или опровергнуть результатами наблюдений. Такой взгляд слишком пессимистичен. Как стадия инфляции, так и довзрывная эпоха должны были оставить после себя артефакты, которые можно заметить и сегодня, например, в небольших вариациях температуры реликтового излучения.
Во-первых, наблюдения показывают, что температурные отклонения были сформированы акустическими волнами за несколько сотен тысяч лет.
Регулярность флуктуаций свидетельствует о когерентности звуковых волн. Космологи уже отвергли целый ряд космологических моделей, не способных объяснить волновой синхронизм. Сценарии с инфляцией, эпохой до Большого взрыва и столкновением мембран успешно проходят это первое испытание. В них синфазные волны создаются квантовыми процессами, усилившимися в ходе ускоряющегося космического расширения.
Во-вторых, каждая модель предсказывает разное распределение температурных флуктуаций в зависимости от их углового размера. Оказалось, что большие и малые флуктуации имеют одинаковую амплитуду. (Отступления от этого правила наблюдаются только при очень малых масштабах, в которых изначальные отклонения изменились под действием более поздних процессов.) В инфляционных моделях это распределение воспроизводится с высокой точностью. Во время инфляции кривизна пространства изменялась относительно медленно, так что флуктуации раз-
личных размеров возникали в почти одинаковых условиях. Согласно обеим струнным моделям, кривизна менялась быстро. В результате амплитуда мелкомасштабных флуктуаций увеличивалась, однако другие процессы усиливали крупномасштабные отклонения температуры, выравнивая общее распределение.
В экпиротическом сценарии этому способствует дополнительное пространственное измерение, разделяющее сталкивающиеся мембраны. В предвзрывной схеме за выравнивание распределения флуктуации отвечает аксион -квантовое поле, связанное с дилатоном. Короче говоря, все три модели согласуются с результатами наблюдений.
В-третьих, в ранней Вселенной температурные вариации могли возникать из-за флуктуаций плотности вещества и из-за слабых колебаний, вызванных гравитационными волнами. При инфляции обе причины имеют одинаковое значение, а в сценариях со струнами основную роль играют вариации плотности. Гравитационные волны должны были оставить свой отпечаток в поляризации реликтового излучения.
Возможно, в будущем его удастся обнаружить с помощью космических обсерваторий, таких как спутник «Планк» Европейского космического агентства.
Четвертая проверка связана с распределением флуктуаций. В инфляционном и экпиротическом сценариях оно описывается законом Гаусса. Вместе с тем предвзрывная модель допускает значительные отклонения от нормального распределения.
Анализ реликтового излучения - не единственный способ проверить рассмотренные теории.
Сценарий с эпохой до Большого взрыва подразумевает возникновение случайного фона гравитационных волн в некотором диапазоне частот, который в будущем можно будет обнаружить с помощью гравитационных обсерваторий. Кроме того, поскольку в струнных моделях изменяется дилатон, тесно связанный с электромагнитным полем, им обеим должны быть свойственны крупномасштабные флуктуации магнитного поля. Не исключено, что их остатки можно обнаружить в галактических и межгалактических магнитных полях.
Так когда же началось время? Наука пока не дает окончательного ответа. И все же согласно двум потенциально проверяемым теориям Вселенная - а значит, и время - существовала задолго до Большого взрыва. Если один из этих сценариев соответствует истине, то космос существовал всегда. Возможно, однажды он снова коллапсиру-ет, но не исчезнет никогда.
|